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of the Pythagorean scale, why is
12�2� important?

2. Are there other problems of interest
to the “working musician” that can
be solved by using (more or less ad-
vanced) mathematics? For example,
of what help is Fourier analysis for
the artisan who wants to construct
a guitar?

3. Is mathematics helpful in analyzing
musical compositions? Did certain
composers have mathematical struc-
tures (like symmetry or remarkable
relations between numbers associ-
ated with the composition) in mind
during their work?

4. Can mathematics be used as a tool-
box to produce interesting music?

All of these aspects are discussed in
this book. The first contribution, “Tun-
ing and temperament” by Neil Bibby,
starts with a description of the early at-
tempts of the Pythagoreans to relate
harmony to mathematics. They discov-
ered that intervals are considered to
sound harmonic if the ratio of the fre-
quencies is a rational number with
“small” nominator and denominator.
The ratio 2:1 is not very interesting
since the octave is somehow identified
with the original tone. The Pythagorean
scale is based on the ratio 3:2, the per-
fect fifth. If one starts with “C”, one first
obtains “G”, then “D” etc. Here, one
has to apply the principle, mentioned
earlier, that a note can be identified
with its octave. So the fifth of the fifth,
the ratio 9:4, is replaced by 9:8 to make
the ratio lie between one and two. In
this way the notes corresponding to the
white keys of the keyboard are gener-
ated. (However, to produce the “F” one
has to go backwards: “C” is the fifth of
“F”: “F” is added to the scale for this
reason.)

Soon it was realized that many of 
the intervals which occur in this scale
are far from being simple. For example,
the frequency ratio of the major third
(“C” to “E”, say) is 81:64. Also, the
Pythagorean scale is not well suited for
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Many years ago, preparing activ-
ities for the general public on
the  occasion of the ICM’98 in

Berlin, the Berlin universities organized
several seminars to discuss the relations
between mathematics and music. Many
different aspects were covered by the
lectures, which were given by people
working in these fields, among them a
number of young composers. For me,
it was a surprise to learn that mathe-
matical ideas are rather influential in
certain areas of contemporary music
(which, however, are not very close to
my personal musical interests: classical
music and jazz). Also I had not realized
before how important physiological
facts are to the possibility of using math-
ematical structures successfully. For ex-
ample, most of us are unable to recog-
nize the absolute pitch of a tone. Only
the relations between different pitches
are perceptible: the interval E–G is “the
same” as the interval A–C. Also, in many
cases a tone may be replaced by its oc-
tave without noticeably changing the
character of a musical piece. As a con-
sequence, much of the work concerned
with scales can be reduced to finding
the appropriate pitch ratios between
one and two.

“Music and mathematics” is not a
well-defined area, but most of what can
be said concerns one of the following
queries:

1. What are the mathematical princi-
ples that underlie the construction of
musical scales? What are the defects
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modulation. If one considers a note al-
ready constructed as the keynote of a
new scale it will be necessary to include
new notes. For example, one has to add
“F sharp” when starting with “G”. This
process never stops. There is no finite
scale which is closed under forming
Pythagorean scales if one can select any
note as a basic key note.

Bibby describes some of the pro-
posals that have been made to over-
come these difficulties. For example, we
learn how the frequency ratios in the
scale of the just intonation are defined
and to what extent it is superior to the
Pythagorean scale. And that Marin
Mersenne designed a keyboard with 31
notes for each octave, which made it
possible to distinguish between “F
sharp” and “G flat”, a distinction which
is important in the Pythagorean scale
and in the just intonation.

Most readers will know that now-
adays nearly all instruments use the
equal temperament. The frequency ra-
tio between two adjacent notes of the
12 notes in an octave on a keyboard is
always the same, and in this way the
twelfth root of 2 comes into play. It is
a really “democratic” scale, as each note
plays the same role. Nevertheless it is
a rather ironical aspect of the history of
music that one started with the philos-
ophy of small rational numbers and
ended up with a scale where no inter-
val (up to the octave) is rational.

But this is not the end of the story.
Later (in Chapter 9) we learn why, be-
sides our 12-tone system, certain n-tone
systems play a role in music theory.
Here in particular the cases n � 13, 19,
21, 31, and 53 are of some interest. Sim-
ilar questions are mentioned also in
some other contributions. For example,
in Chapter 2—a chapter with a more
historical than mathematical empha-
sis—J. V. Field explains how Kepler
tried to find musical proportions in var-
ious quantities of the solar system.

For me, the most interesting chap-
ters are those of Part Two, “The math-
ematics of musical sound”. First, in
Chapter 3, Charles Taylor describes
some experiments with real instruments
to demonstrate how one can hear com-
binations of notes. It is a strange fact
that the ear sometimes “hears” the dif-
ference note of, e.g., 80 Hz if two notes
of 500 and 580 Hz are played simulta-
neously. Taylor has no convincing ex-

planation of this phenomenon; it is ar-
gued that the effect is caused by a com-
bination of physical and physiological
reasons.

Next, in Chapter 4, Ian Stewart
demonstrates that many interesting
mathematical problems are touched
upon if one wants to calculate the po-
sitions of the frets of a guitar correctly.
He explains the difference between
“construction with circle and ruler” and
“construction with circle and unmarked
ruler” and how simple it is to trisect an
angle if one is allowed to mark a dis-
tinguished point on the edge of the
ruler.

The main part of Stewart’s article is
the description of Strähle’s construction
of the position of the frets. Strähle, a
Swedish craftsman, suggested his con-
struction in 1743, but it was erroneously
argued by Jacob Faggot, of the Swedish
Academy, that the argument has a flaw.
Strähle had in fact found an approxi-
mation of 12�2� by simple geometric
means, which in a sense, is optimal: the
best approximation of 2x by a function
of type (ax � b)/(cx � d) is

,

and Strähle used this function; he ap-
proximated �2� by 17/12, a ratio which
appears when expanding �2� as a con-
tinued fraction.

The third article in this part (Chap-
ter 5) is David Fowler’s essay on
Helmholtz. For many readers it will be
a surprise to learn that Helmholtz not
only was a famous physicist but also a
physiologist who worked on the phys-
iological basis of the theory of music.
Fowler starts with a description of
Helmholtz’s experiments with sound
generators; they were used to demon-
strate combinational tones like the dif-
ference notes mentioned earlier. More
substantial and mathematically more in-
teresting, however, is the solution
Helmholtz proposed for the problem of
consonance. A fifth and a fourth, for ex-
ample, which are defined by the ratios
3:2 and 4:3, are perceived as a harmo-
nious sound, which is more pleasant for
the ear than an interval selected at ran-
dom.

What is the cause of this phenome-
non? Some answers, among them those
of Plato, Kepler, and Galileo, are
sketched (in my opinion, Euler’s gradus

(2 � �2�)x � �2�
��
(1 � �2�)x � �2�

suavitatis should also have been men-
tioned here).

The starting point of Helmholtz’s ap-
proach is his consonance curve. Imag-
ine two instruments playing a note in
unison. If one of the frequencies is
slowly increased, one will hear a beat-
ing. First it is slow, but it becomes
quicker and “more unpleasant”.
Helmholtz quantified this sensation by
associating a “degree of unpleasent-
ness”: if the number of beats is x, then
�(x) measures the “unpleasantness”.
Obviously one has �(0) � 0, and qual-
itatively it is clear that � will first in-
crease up to an maximum (which is as-
sumed to be around x � 30) and then
decrease.

In order to have a mathematically
simple representation of �, Helmholtz
chose �(x) � �x/(30 � x2)2, a choice
which of course is somewhat arbitrary.
This � is used to explain consonance
as follows. If two instruments play an
interval, one has to sum up the �-val-
ues which belong to every pair of fre-
quencies from the list of all pitches
which occur in the Fourier expansion
of the two notes which constitute the
interval.

The result is a rather rough curve
with minimum zero at the frequency ra-
tios 1:1 and 2:1. But, remarkably, there
are also some steep valleys in the graph
at 3:2, 5:4, and the other ratios which
correspond to the Pythagorean scale.

Part Three concerns “The mathe-
matical structure of music”. I am sure
that the fascination one can feel when
listening to a Schubert sonata or a
Chopin mazurka will never be accessi-
ble to a mathematical analysis. There
are, however, many “intellectual” as-
pects of music where a mathematical
language can reasonably be applied.
For example, group theory naturally
comes into play when speaking about
musical symmetries: see Chapter 6, “The
Geometry of Music”, by Wilfrid Hodges.
But most of these symmetries are only
perceptible by optical inspection of the
score. (As an experiment, I suggest
playing the notes from the first two bars
of a popular song in reverse order. It is
rather unlikely that an untrained listener
will recognize the original.)

Not only group theory plays a role
here. In Chapter 7, in the article by Der-
mot Roaf and Arthur White on “Bells
and mathematics”, the emphasis is on
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combinatorics. “Ringing the changes” is
the art of ringing a collection of n bells
sequentially such that, at the end, all n!
permutations have been heard. In ad-
dition, certain conditions must be satis-
fied, for example, from one round to
the next, only transpositions between
adjacent bells are admissible. This is so
because, otherwise, it would be difficult
to perform the sequence with really ex-
isting heavy bells. It is interesting to see
how this problem can be solved by
rather simple algorithms and how the
solutions are visualized graphically.

In the last chapter of this part, “Com-
posing with numbers” by Jonathan
Cross, we are introduced to some math-
ematical ideas which have found their
way to being used as tools for com-
posers. The story begins with the
twelve-tone row of Arnold Schönberg;
a number of other examples are also
discussed. The idea is always the same.
First, one associates certain musical pa-
rameters, like pitch or duration, with
numbers or more complicated mathe-
matical objects, and then the structure
of the mathematical part is translated to
a piece of music. For example, one
could select a magic square and then
use the rows (or the columns, or the
diagonals) to define the pitches of the
clarinet line or the durations of the bas-
soon line.

Similar ideas are found in Part Four,
“The Composer Speaks” (Carlton Gamer

and Robin Wilson on “Microtones and
projective planes” and Robert Sherlaw
Johnson on “Composing with fractals”).
The titles indicate the mathematical
source of the compositions. Finite pro-
jective planes are used to identify cer-
tain subsets of tones. For example, if
one wants to select three notes out of
seven in such a way that the selection
generates a “cyclic design”, one finds
everything that is needed in the geom-
etry of the Fano plane. (A cyclic design
in this case is a pattern such that trans-
lations modulo 7 give rise to subsets of
{0, . . . ,6} in which each pair of num-
bers is contained in precisely one of the
translations.)

Dynamical systems are very com-
mon in contemporary music. Here the
well-known two-dimensional iterative
patterns which lead to the Mandelbrot
set generate the musical material. For
example, if the channel of the synthe-
sizer has to be determined where the
next note will be generated, then a dis-
cretization of the y-value of the pres-
ent position of the system is important:
e.g., if it lies in [ 7,8 [, then choose
channel 5.

It should be noted that the book is
very carefully edited. It is a pleasure to
read, and there are many interesting
pictures and scores to illustrate the ma-
terial. Readers who are particularly in-
terested in the historical part of the sub-
ject can consult the book Mathematics

and Music (edited by Gerard Assayag,
Hans-Georg Feichtinger, and Jose Rod-
riguez, Springer 2002; reviewed in The
Mathematical Intelligencer, vol. 27, no.
3, p. 69). There is, surprisingly, only a
small overlap in the content of these
two books. The generation of scales by
mathematical principles naturally plays
a prominent role in both of them.

For me, only two aspects are miss-
ing. The first omission: I would have
appreciated an article on Euler’s work
on music. He was one of the first to re-
late mathematics to consonance, and it
would be interesting to compare his
work with that of Helmholtz. And I was
surprised to see that one cannot find
anything substantial on “probability and
music”. In the music of the last century
there is an abundance of examples in
which the building blocks of certain
compositions are generated stochasti-
cally, be it the pitches, the durations, or
even the wave forms of the sounds.

But these objections are not essen-
tial. Let’s praise the editors that they
have presented an attractive volume
that covers almost all of the important
aspects of the interplay between math-
ematics and music.
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