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Ehrhard Behrends

Abstract. We fix an integer d ≥ 1 : the dimension in the space where
we are going to present our magic trick is d + 1. A prime number p is also
chosen, the elements of the field Zp wil be represented by colours.

Now a “pyramid” in Rd+1 is built as follows. The first layer consists of nd

coloured (d+1)-dimensional cubes of unit length, where n is an integer. They
are arranged as the first layer of a pyramid in Rd+1, the d+ 1 lengths of the
sides of this layer are n, n, . . . , n, 1. The second layer consists of (n − 1)d

coloured cubes. The colours of the new cubes are determined by the colours
of the cubes of the first layer in a simple way, and the second layer is placed
“on” the first one. (Admittedly, this is not easy to imagine if d > 2.) In
this way one continues, a pyramid grows in d+1 dimensions, and after n− 1
steps we arrive at its top that consists of a single cube. The problem is to
predict the colour of this final cube in a simple way from the first layer. We
will characterize the numbers n where this is possibe. It will turn out that in
most cases the “good” n are precisely the integers of the form ps + 1 when
the rules of the game are based on the algebraic operations in the field Zp.
This can be used as a prediction trick by magicians in hyperspace.

Our proofs are somehow technical, but elemenary. The key idea is to find
the relevant quantities by counting the number of certain walks. Also Ram’s
result on the properties of binomial coefficients modulo a prime number will
play a crucial role. AMS-classification: 00A08, 00A09, 05A10;

keywords: Ram’s theorem, mathematical magical tricks, little Fermat theo-
rem, binomial coefficients.

Introduction

In the sequel (∆,+), our set of “colours”, will be a nontrivial finite abelian
group, and d ≥ 1 will be a fixed integer. We will be concerned with hyperpyramids
in Rd+1 that are built from coloured (d+ 1)-dimensional unit cubes.

Given an integer m we define Ad,m to be the collection of d-dimensional arrays
(xi1,...,id)i1,...,id=0,...,m−1 with xi1,...,id ∈ ∆. For d = 1 (resp. d = 2) the set Ad,m
is the collection of m-tupels (resp. m×m-matrices) with entries from ∆.

We will think of the elements of Ad,m as follows. First we will associate with
the x ∈ ∆ colours such that different x correspond to different colours. And then
(xi1,...,id)i1,...,id=0,...,m−1 ∈ Ad,m is a family of coloured unit cubes in Rd+1 that
are arranged such that they fill the set [ 0, n ]× · · ·× [ 0, n ]× [ 0, 1 ] or a translation
of it.

Let us illustrate this with ∆ = Z3. We choose the following colours:

0 = white; 1 = light gray; 2 = dark gray.



A typical element of A1,m is a row of coloured squares. Here is an example with
m = 10.

In the case d = 2 we are in R3 and the elements of A2,m can be thought of as
square arrangements of unit cubes. Here one sees a 10×10-square for the preceding
∆:

An element of A2,10: in R3 (left) and seen from the top (right)

(The left cube in the back row has colour x0,0 = 2 = dark gray .) Seen from
the top – in the picture on the right – this array is just a coloured checkerboard.

Needless to say that the case d = 3 is more difficult since we are working in four
dimensions. If we drop one dimension an m-layer (xi1,i2,i3)i1,i2,i3=0,...,m−1 in R4

could be represented as a threedimensional cube made of m3 little cubes as in the
following picture on the left. (Here is m = 4.)

An element of A3,10 in R4: a 3D projection (left)
and the separated layers of the cube (right).

The 3D projection corresponds to the way how we saved one dimension for layers
in R3 just before.

Fourdmensional beings could see the inside colours, and this will be important
in the sequel. However, we cannot. But we have the possibility to show all colours
by representing the big cube by m layers of height 1. In the preceding picture on
the right one looks inside the cube: the first layer is the bottom layer etc.

This could be generalized: each element of Ad,m could be visualized for us by
md−2 elements of A2,m.

The next step is to build new arrays. To this end we fix a family α = (αj1,...,jd)j1,...,jd=0,1

with αj1,...,jd ∈ Z, and we define Φm : Ad,m → Ad,m−1 as follows: Φm
(
(xi1,...,id)i1,...,id=0,...,m−1

)
is the array (yi1,...,id)i1,...,id=0,...,m−2 ∈ Ad,m−1, where

yi1,...,id :=
∑

j1,...,jd=0,1

αj1,...,jdxi1+j1,...,id+jd .
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(Note that every group allows a natural multiplication by elements of Z.)

To state it otherwise, we have a map φα : Ad,2 → ∆ that is defined by

(zj1,...,jd)j1,...,jd=0,1 7→
∑

j1,...,jd=0,1

αj1,...,jdzj1,...,jd ,

and φα is applied to every collection of 2d adjacent hypercubes to produce the new
colour.

By Φm we obtain a smaller layer of a “hyperpyramid in Rd+1”. This is just a
shorter row of squares in the case d = 1 and a smaller quadratic array of unit cubes
in the case d = 2.

Let us illustrate this in the case of the above examples. In the first one (d = 1)
we choose α0 = α1 = −1. Here one sees the original row of squares and – on top
of them – the new shorter row.

One can rephrase the rule as follows: put on the top of two adjacent squares
with colours x, y one with colour −x − y. We note that this definition was the
starting point of the present investigations (see [?]). It has the remarkable property
that it can be reformulated without using the algebraic structure of Z3: “If the
colours x, y coincide, use the same colour; if not, use the colour that is missing.”

And here is the example with d = 2 where we chose α0,0 = α1,0 = 1 and
α0,1 = α1,1 = −1. The following picture shows the original and the first two layers.

(Here is an example how the new colours are determined: The right cube in the
back row of the new layer is green since

1 · x0,0 − ·x0,1 + ·x1,0 − ·x1,1 = 1 · 2− 0 + 1 · 2− 0 = 1.

It is natural to continue this process by using the same rule for the new layers
again and again until one finally arrives at a single cube in Rd+1. Here are the
completed examples, a triangle and a pyramid:
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Can we easily predict the colour on the top from the starting configuration?
The investigations in [?] started (in one dimensions) with the observation that –
for certain widths of the starting layer – the final colour can be obtained by using
the general rule for the colours of the extreme squares (the left and the right), and
these investigations were continued in [?]. This happens in the preceding examples:
the top colour of the triangle is white, and this colour would also be the result if
we applied the rule to the left and right colours of the first row.

And the top of the pyramid is light gray, the same as the resulting colour of
the corner colours of the first layer.

We will show that similar predictions are possible in hyperspace.

The notation will be similar as in [?] and [?]:

• Fix an integer n ≥ 2 and define Ψn : Ad,n → Ad,1 = ∆ by

Ψn := Φ2 ◦ Φ3 ◦ · · · ◦ Φn.

Ψn associates to a first layer the top colour.

• Call n φα-simple if

Ψn

(
(xi1,...,id)

)
= φα

(
(xj1(n−1),...,jd(n−1))j1,...,jd∈{0,1}

)
.

In other words: the top colour is the φα-result of the corner colours of the
starting layer, and with the preceding examples we illustated the fact that
n = 10 is φα-simple for the α under consideration.

We will characterize the φα-simple integers in the next sections, the main result
is theorem 1 below. Since the investigations are rather technical we will treat the
case d = 2 first. In this way we can present the relevant ideas much simpler than
for the general situation.

The paper closes with some proposals for magicians in hyperspace.

The case d = 2: “ordinary” pyramids in R3

Our main result will be prepared by a number of lemmas. We start with some
definitions.

The S-arrays and a characterization

In this section we will work with d = 2. Let n ≥ 2 and α = (α0,0, α0,1, α1,0, α1,1)
in Z4 be fixed. For x ∈ ∆ and i1, i2 ∈ {0, . . . , n − 1} we denote by Sn,xi1,i2 the
array in A2,n that is x at position (i1, i2) and zero at all other positions. We put
σn,xi1,i2 := Ψn(Sn,xi1,i2): this is the colour of the top cube if the bottom layer is simple:
colour x at (i1, i2), the other cubes have the trivial colour.

Lemma 1: n is φα-simple iff the following two properties hold:

(i) σn,x0,0 = α0,0x, σn,x0,n−1 = α0,1x, σn,xn−1,0 = α1,0x, σn,xn−1,n−1 = α1,1x for all x.

(ii) σn,xi1,i2 = 0 for all x and all (i1, i2) that do not lie in the set of corners C :=
{(0, 0), (0, n− 1), (n− 1, 0), (n− 1, n− 1)}.
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Proof: This assertion follows immediately from the formula

Ψn

(
(xi1,i2)i1,i2=0,...,n−1

)
=

∑
i1,i2=0,...,n−1

σ
n,xi1,i2
i1,i2

which is true by the additivity of the operations under consideration. �

Integers that are zero relative to ∆

The elements of our group ∆ are multiplied by integers. For k ∈ Z we will write
k =∆ 0 if kx = 0 for all x ∈ ∆. In the following lemma we collect some elementary
properties of this definition:

Lemma 2: (i) {k | k =∆ 0} is an ideal in Z and thus of the fom βZ.

(ii) The most general nontrivial finite abelian group ∆ is a product of groups of
type (Zpρ)tρ for different primes pρ and tρ ∈ N (ρ = 1, . . . , r). In this case β is
the product of the pρ. In particular we have β = p for ∆ = (Zp)t.

The coefficients Cn,ηi1,i2

In order to apply lemma 1 we have to investigate the σn,xi1,i2 more carefully. A
recursion formula is easily established, one only has to check what happens with
Sn,xi1,i2 in the second layer:

σn,xi1,i2 = α0,0σ
n−1,x
i1,i2

+ α0,1σ
n−1,x
i1,i2−1 + α1,0σ

n−1,x
i1−1,i2

+ α0,0σ
n−1,x
i1−1,i2−1.

(Here we put σm,xi1,i2
:= 0 for all m if i1 = −1 or i2 = −1.)

It follows that there are Nn
i1,i2

∈ Z such that σn,xi1,i2 = Nn
i1,i2

x, and Nn
i1,i2

is
a homogeous polynomial in α0,0, α0,1, α1,0, α1,1. In view of lemma 1 we have to
check whether Nn

(n−1)j1,j2(n−1) − αj1,j2 =∆ 0 for j1, j2 = 0, 1 and Nn
i1,i2

=∆ 0 for

(i1, i2) /∈ C. For some i1, i2 it is easy to find formulas for Nn
i1,i2

. For example, if

(i1, i2) = (j1(n− 1), j2(n− 1)) (with j1, j2 = 0, 1) lies in C, then Nn
i1,i2

= αn−1
j1,j2

,
but for the i1, i2 “in the middle” it seems hopeless to find easy explicit expressions.

Nn
i1,i2

is a homogeneous polynomial af degree n − 1 in the components of α.
To describe it in more detail we introduce the following notation:

• By En−1 we denote the collection of possible multi-exponents:

En−1 :=

{
(η0,0, η0,1, η1,0, η1,1) | ηj1,j2 ∈ N 0,

∑
j1,j2=0,1

ηj1,j2 = n− 1

}
.

• For η = (η0,0, η0,1, η1,0, η1,1) ∈ En−1 the expression αη means the integer
α
η0,0
0,0 · α

η0,1
0,1 · α

η1,0
1,0 · α

η1,1
1,1 . (For example, in the case η = (1, 3, 4, 0) and

α = 10, 5,−2, 3) we have αη = 101 · 53 · (−2)4 · 30.)

With this notation it is possible to write Nn
i1,i2

as

Nn
i1,i2 =

∑
η∈En−1

Cn,ηi1,i2
αη
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for suitable Cn,ηi1,i2
∈ N 0. We will find explicit expressions for these numbers.

In this way the Cn,ηi1,i2
are defined for 0 ≤ i1, i2 ≤ n− 1 and η ∈ En−1. It will be

convenient to extend the definition to all integers i1, i2 with −1 ≤ i1, i2 and η with
components in {−1, 0, 1, 2, . . .}: the C for the new i1, i2, η are defined to be zero.

Lemma 3: The Cn,ηi1,i2
satisfy the following conditions:

(i) For n = 2 we have

C
2,(1,0,0,0)
0,0 = C

2,(0,1,0,0)
0,0 = C

2,(0,0,1,0)
0,0 = C

2,(0,0,0,1)
0,0 = 1

and all other C2,η
i1,i2

are zero.

(ii) The following recursion formula holds:

Cn,ηi1,i2
= C

n−1,(η0,0−1,η0,1,η1,0,η1,1)
i1,i2

+ C
n−1,(η0,0,η0,1−1,η1,0,η1,1)
i1,i2−1 +

C
n−1,(η0,0,η0,1,η1,0−1,η1,1)
i1−1,i2

+ C
n−1,(η0,0,η0,1,η1,0,η1,1−1)
i1−1,i2−1 .

Proof: (i) This is an easy consequence of the definition of Φ2. For example,

σ2,x
0,1 = α0,1 x so that Nn

0,1 = α0,1. Consequently C
2,(0,1,0,0)
0,1 = 1 and the other

C2,η
0,1 vanish.

(ii) How can one arrive at a summand of type αηx for the top colour after n − 1
steps if one starts with Sn,xi1,i2 ? The second layer has entry α0,0 · x (resp. α0,1 · x
resp. α1,0 · x resp. α1,1 · x) at position (i1, i2) (resp. (i1, i2 − 1) resp. (i1 − 1, i2)
resp. (i1− 1, i2− 1)). Position i1, i2 will contribute to αη · x in n− 2 further steps

precisely C
n−1,(η0,0−1,η0,1,η1,0,η1,1)
i1,i2

times, and taking into account the other three
positions as well we arrive at the recursion formula. �

Walks

We now turn to the study of certain walks. There is a useful connection to the
Cn,ηi1,i2

, this will be crucial for the determination of φα-simple integers.

We will consider walks on Z2: they start at (0, 0), they terminate at (i1, i2)
(where 0 ≤ i1, i2 are fixed), their length is n − 1 and the allowed steps are
(0, 0), (0, 1), (1, 0) and (1, 1). More precisely we define two-dimensioanl vectors
vj1,j2 by vj1,j2 := (j1, j2) for j1, j2 = 0, 1, and we are interested in sequences

v1, v2, . . . , vn−1 ∈ {v0,0, v0,1, v1,0, v1,1} such that
∑n−1
i=1 vi = (i0, j0).

In fact, our investigations will have to be more subtly. Let η ∈ En−1 be given.
By Wn−1,η

i1,i2
we denote the number of walks of the above kind where among the

v1, . . . , vn−1 one finds ηj1,j2 vectors vj1,j2 (j1, j2 = 0, 1).

Remarks and examples: 1. Wn−1,η
i1,i2

will be different from zero if and only if∑
j1,j2=0,1 ηj1,j2vj1,j2 = (i1, j1).

2. Suppose that (i1, i2) = (0, 0). There is only one walk that terminates there,

namely the walk v0,0, . . . , v0,0. This means that W
n−1,(n−1,0,0,0)
0,0 = 1, and all other

Wn−1,η
0,0 vanish.
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3. Now we consider (i1, i2) = (0, i) for some i ∈ {1, . . . , n− 2}. In order to arrive
there we must use only the vectors v0,0 and v0,1. More precisely: one needs i vectors
v0,1 and (n− 1)− i vectors v0,0. There are

(
n−1
i

)
possibilities to do this, and this

means that W
n−1,((n−1)−i,i,0,0)
0,i =

(
n−1
i

)
, and the other Wn−1,η

0,i are zero.

4. In the preceding examples only one Wn−1,η
i1,i2

was different from zero. This occurs
rarely: Suppose, e.g., that (i1, i2) = (2, 2) and n = 5. How can we walk from (0, 0)
to (2, 2) in four steps? There are several possibilities:

• Use two v0,0 and two v1,1.

• Use v0,0, v1,0, v0,1, v1,1, each of them once.

• etc.

It follows that W 4,η
2,2 does not vanish for η = (2, 0, 0, 2), (1, 1, 1, 1), . . ..

5. It will be convenient to extend the definition by allowing that i1 or i2 or both are
−1. Since in this case there are no walks that start at (0, 0) and terminate there
the associated W is defined to be zero.

The Wn−1,η
i1,i2

can be determined recursively. Suppose we want to arrive at (i1, i2)
after n− 1 steps subject to the condition that we use ηj1,j2 times the vector vj1,j2
(j1, j2 = 0, 1). Our first step will us lead to (0, 0), (0, 1), (1, 0) or (1, 1). Suppose
that we are then at (0, 1). To come to (i1, i2) we must continue with a walk of
length n− 2 from (0, 0) to (i1, i2 − 1). Similarly one can deal with the other three
positions after the first step.

This leads to the recursion

Wn−1,η
i1,i2

= W
n−2,(η0,0,η0,1,η1,0,η1,1)
i1,i2

+W
n−2,(η0,0,η0,1−1,η1,0,η1,1)
i1,i2−1 +

W
n−2,(η0,0,η0,1,η1,0−1,η1,1)
i1−1,i2

+W
n−2,(η0,0,η0,1,η1,0,η1,1−1)
i1−1,i2−1 .

And how many walks are there for n = 1 ? Only the η = (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1) will have to be considered. There is only one walk associated
with each such η, and they terminate at (0, 0), (0, 1), (1, 0), (1, 1), respectively. In
other words:

W
1,(1,0,0,0)
0,0 = W

1,(0,1,0,0)
0,0 = W

1,(0,0,1,0)
0,0 = W 1

0,0, (0, 0, 0, 1) = 1

and all other W 2
i1,i2

, η are zero.

A formula for the Cn,ηi1,i2

Now we can calculate the Cn,ηi1,i2
. We only have to combine the following two facts:

• The Cn,ηi1,i2
satisfy the same recursion formula as the Wn−1,η

i1,i2
, and we have

seen that the initial conditions are also the same. Thus Cn,ηi1,i2
= Wn−1,η

i1,i2
.
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• Wn−1,η
i1,i2

can be determined with the help of elementary combinatorics: given
η ∈ En−1 such that

∑
j1,j2=0,1 ηj1,j2vj1,j2 = (i1, i2) we ask for the number

of possibilities to put ηj1,j2 vectors vj1,j2 in a sequence of n− 1 vectors (all
(j1, j2 = 0, 1)). There are

(
n−1
η0,0

)
possibilities to place v0,0, there remain

(n − 1) − η0,0 places for the v0,1 (=
(

(n−1)−η0,0
η0,1

)
possibilities) etc. It fol-

lows that Wn−1,η
i1,i2

is the product of
(
n−1
η0,0

)
,
(
n−1−η0,0

η0,1

)
,
(
n−1−η0,0−η0,1

η1,0

)
and(

n−1−η0,0−η0,1−η1,0
η1,1

)
. (The last factor is

(
η1,1
η1,1

)
= 1.)

In our argument we started with η0,0, then we used η0,1 etc. But any other order to
deal with the components of η would work as well. For the sake of easy reference
we formulate this observation as

Lemma 4: Let e1, e2, e3, e4 be any enumeration of the components of η. Then

Cn,ηi1,i2
= Wn−1,η

i1,i2

=

(
n− 1

e1

)(
n− 1− e1

e2

)(
n− 1− e1 − e2

e3

)
.

The main theorem

Our preparations are nearly complete. It only remains to remind the reader to
Balak Ram’s result [?] on binomial coefficients:

• Let p be a prime and m an integer. Then all
(
m
l

)
for l = 1, . . . ,m−

1 are divisible by p iff there is an s such m = ps.

• Let m, r be integers such that m > r > 1. If r divides all
(
m
l

)
for

l = 1, . . . ,m − 1 then r is a prime and – by the first part – m is
of the form rs.

A proof can be found in [?] and [?] (for a far-reaching generalization see [?]).

The following theorem summarizes our main results:

Theorem: Let p be prime number and ∆ the group Ztp for an integer t. Further
let α = (αj1,j2)j1,j2=0,1 with αj1,j2 ∈ Z be given.

(i) Suppose that αj1,j2 = 0 mod p for all j1, j2. Then all n > 2 are φα-simple.

(ii) Suppose that all but one αj1j2 are zero modulo p. We will call this nonzero
component γ. Denote by π the order of γ in the group of invertible elements of Zp,
i.e., the smallest m in N such that γm = 1. Then an integer n > 2 is φα-simple iff
(n− 1) mod π = 1. In particular the numbers of the form ps + 1 are φα-simple.

(iii) Now suppose that there are at least two αj1j2 that are not zero modulo p.
Then an integer n > 2 is φα-simple iff it is of the form ps + 1 for some s ∈ N .

Proof: (i) This is obvious.

(ii) Suppose, for example, that γ = α0,0 6= 0 mod p and the others are zero. Then
σn,x0,0 = γn−1 x and the other σn,xi1,i2 are zero. Thus, by lemma 1, an integer n will be

φα-simple iff γn−1 − γ =∆ 0. And this is obviously the case iff (n− 1) mod π = 1

8



(iii) Suppose that n is of the form ps+1. We have to check whether the conditions
of lemma 1 are satisfied. That αn−1

j1(n−1),j2(n−1) = αj1(n−1),j2(n−1) for all j1, j2 =

0, 1 follows from the little Fermat theorem. What about the second condition of
lemma 1 ? Let (i1, i2) be a tuple that does not lie in the corner set C. Suppose,
e,g, that i1 lies strictly between 0 and n − 1. Let us consider the Wn−1,η

i1,i2
. If this

number is different from zero we have η0,1,0,0 + η0,0,0,1 = i1 so that one of the
components of η must lie strictly between 0 and n− 1. With the help of lemma 4
we may conclude from Ram’s theorem that Wn−1,η

i1,i2
= Cn,ηi1,i2

= 0 mod p. And this
proves that σn,xi1,i2 = 0.

Now suppose that n − 1 is not of the form ps. We will show that there are
(i1, i2) that do not lie in the corner set C and an x ∈ Zp such that σn,xi1,i2 6= 0 so
that, by lemma 1, n is not φα-simple.

Case 1: There are two αj1,j2 that are not zero in Zp and for which the j1 or j2
coincide. Suppose, for example, that α0,0, α0,1 6= 0 mod p.

By the second part of Ram’s theorem there is a k ∈ {1, . . . , n − 2} such that(
n−1
k

)
6= 0 mod p. We consider (i1, i2) := (0, k). The only η such that Cn,η0,k is

different from zero is η′ = (n − 1 − i, i, 0, 0), and Cn,η
′

0,k =
(
n−1
k

)
so that σn,x0,k =(

n−1
k

)
αn−1−k

0,0 · αk0,1 x. This number is different from zero for every x 6= 0 in Ztp
since Zp is a field.

Case 2: Case 1 does not hold. Then the two nonzero components of α are either
α0,0, α1,1 or α0,1, α1,0. Suppose that α0,0, α1,1 6= 0 mod p.

This time we work with (i1, i2) = (k, k), where k is as in case 1. From α0,1 =
α1,0 = 0 we conclude that σn,xk,k =

(
n−1
k

)
αn−1−k

0,0 ·αk1,1 x, and this number is different
from zero for every x 6= 0. �

In order to generalize this theorem to the case of arbitrary finite abelian groups
one only has to combine the following three facts:

• Suppose that ∆′ is a subgroup of ∆. If n is φα-simple when working with ∆
it will be also φα-simple with respect to ∆′.

• If ∆ = ∆1×∆2 is a product group an n is φα-simple for ∆ iff it is φα-simple
for ∆1 and for ∆2 simultaneously.

• Every nontrivial finite abelian group ∆ is of the form
∏
ρ=1,...,r(Zpρ)tρ for

different primes pρ and tρ ∈ N .

In this way we can characterize the φα-simple n for all ∆. One only has to check
how many αj1,j2 vanish modulo p1, p2, . . . , pr, respectively. We only mention an
interesting consequence: suppose that there are at least two p among the pρ such
that there are at least two αj1,j2 that are not zero modulo p. (This is, for example
true if r > 1 and all αj1,j2 lie in {−1, 1}.) Then there are no φα-simple n > 2. For
a proof one only has to note that it is not possible for an integer to be of the form
ps + 1 for two different p simultaneously.

The case of arbitrary d : hyperpyramids in Rd+1
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Fortunately one needs no new ideas to treat the case of arbitrary d. Only the number
of indices will increase. Therefore we will restrict ourselves to a rough sketch how
to proceed.

1. Choose ∆ as before and fix d ∈ N and α as in the introduction.

2. For x ∈ ∆ we denote by Sn,xi1,...,id ∈ Ad,n the element where (i1, . . . , id) has
colour x and all other colours are zero. And σn,xi1,...,id is the top colour when starting
with Sn,xi1,...,id as the first layer.

3. Nn
i1,...,id

, En−1 ⊂ N 2d

0 and Cn,ηi1,...,id
denote the natural generalizations of the

Nn
i1,i2

, En−1 ⊂ N 4
0 and Cn,ηi1,i2

of the previous section.

4. It will then be crucial to see that Cn,ηi1,...,id
can be calculated as the number of

walks in Zd of length n − 1 from the origin to (i1, . . . , id) that use ηj1,...,jd steps
of type (j1, . . . , jd) for all j1, . . . , jd = 0, 1.

5. In this way one obtains a formula for Cn,ηi1,...,id
. The most important consequence

is that these numbers vanish modulo p for the (i1, . . . , id) “in the middle” if ∆ =
(Ztp) and n is of the form ps + 1.

6. This is the essential ingredient to prove a generalization of theorem 1 for the case
of arbitrary d and ∆ = (Zp)t. Not much further work is necessary for a complete
proof:

• That condition (i) of lemma 1 is satisfied for n = ps + 1 follows again from
the little Fermat theorem.

• For the reverse implication (only the n = ps + 1 are φα-simple if there are at
least two nontrivial αj1,...,j2) we argue as follows.

Suppose that at least two αj1,...,jd are nonzero modulo p. Without loss of
generality α0,0,....0 is one of them. Now choose an αj1,...,jd 6= 0 mod p in the
collection of remaining nonzero (modulo p) αj1,...,jd such that {κ | jκ = 0}
has the maximal number of elements1. Without loss of generality we may
assume that we chose α1,1,...,1,0,...,0 (δ 1’s followed by d − δ zeros, where
1 ≤ δ ≤ d.) Then we know that αj1,...,jδ,0,...,0 = 0 unless j1 = · · · = jδ = 1.
And now we can copy the proof of the second half of (iii) in theorem 1: If n
is not of the form ps + 1 choose k ∈ {1, . . . , n − 1} with

(
n−1
k

)
6= 0 mod p.

Then one has

σn,xk,...,k,0,...,0 =

(
n− 1

k

)
αn−1−k

0,...,0 · αk1,...,1,0,...,0 x,

and this is not zero for x 6= 0. By lemma 1, n is not φα-simple.

Some proposals for magicians in hyperspace

1More precisely, let us denote by K ⊂ {0, 1}d \ (0, . . . , 0) the collection of (j1, . . . , jd) with
αj1,...,jd 6= 0 mod p. The map τ : K → {0, . . . , d − 1} counts the number of zeros, and we
choose a (j1, . . . , jd) where τ is maximal
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Dear magician in Rd+1 with d > 2 ! It is to be hoped that you have an audience
that likes lengthy calculations. If you start with a φα-simple n they will have to
select nd colours from Zp for the first layer. Each new colour for the little cubes of
the further layers necessitates the calculation of a sum of 2d numbers, and this has
to be done (n− 1)d + (n− 2)d + · · ·+ 1 times. But at such an occasion you can
present your spectacular magic trick: immediately after the choice of the first layer
you can write down your prediction of the top colour, and this will turn out to be
true!

Suppose that you work in four dimensions, please allow us to see you in action.
For simplicity you work with Z3 with the colour convention of the first section, and
with α defined by α0,0,0 := 2 and αj1,j2,j3 := 1 for the other components of α you
choose the modest φα-admissible number n = 4 for your trick.

Someone in the audience proposes a starting pattern. For us who live in R3 we
represent it as a cube, and since we want to have a look inside we even sketch the
four layers of it separately.

Now it is your turn: the corner colours are x0,0,0 = 2, x0,0,3 = 2,0, 2, 0, 1, 2, 02,
and by the choice of α you have to calculate two times the first colour plus the sum
of the remaining ones: 2 · 2 + 2 + 0 + 2 + 0 + 1 + 2 + 0 = 2. Thus your prediction
of the final colour is “dark gray”.

Now your visitors will have to work. Wherever 8 little four-dimensional cubes
meet they have to put “on top” of them a cube with a new colour. In our case it is
the sum of the 8 colours, but the colour of the left/back/bottom-cube counts twice.
They do this 33 + 23 + 13 = 36 times, and then they have built a little pyramid in
R4. The top colour really is “dark gray” as predicted.

In the following pictures there are depicted the intermediate steps of this construc-
tion:

We close this section with two advices for an audience of non-mathematicians:
it might happen that they don’t like the calculations in Zp.

2Recall that x0,0,0 is in the back to the left of the bottom layer, x0,1,0 is the second cube
from the left in the back row of the bottom layer etc.
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• Choose the simplest group, ∆ = Z2, and represent 0 and 1 by colours, e.g. by
white (for 0) and green (for 1). The admissible n are the numbers 2s+1 and
there are in fact not many choices for the αj1,...,jd . Suppose that you decided
that all of them are 1. Then the audience simply will have to calculate a sum
in Z2, and this can be translated as follows:

Suppose that you see j green cubes among the adjacent 2d cubes
that determine the new colour c. Choose c such that the total
number of green cubes is now even. (In other words, c is green if
j is odd and red otherwise.)

• Also rather simple is the case ∆ = Z3 together with α where all αj1,...,jd
equal 2. You work with three colours, e.g. with white (for 0), light gray
(for 1) and dark gray (for 2). It will be necessary to calculate expressions
−a1 − a2 − · · · − ak in Z3. This can be done by using the following rules:

– Cancel all red colours, then all pairs blue/green, and then each three of
the same colour.

– There will remain: no colour / a single colour / a pair of the same color.

– In the first case chooose white as the new colour, in the second the
other one in the pair light gray/dark gray and in the third the colour of
the pair.

E.g., if your visitors have to treat w,w,lg,dg,dg,dg,lg,lg,lg,lg,lg,dg,dg,w,lg dur-
ing your presentation in R5 they will arrive at “dg” after the first step so
that the new colour is light gray .

Good luck for your performances!
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